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Abstract:  There is no strict time limit for truck arrivals in the process of terminal
consolidation. The uncertain truck arrival time directly affects the container
stockpiling structure which is essential to the pick-up efficiency of yard crane in ship
loading operations. Many unnecessary time-coasting actions such as reshuffling and
frequent movement of yard crane caused by unreasonable stowage structure would
lower terminal productivity. Generalized container delivery sequence with delivery
time uncertainty is described by using Markov Chain (MC) and then an estimating
delivery sequence would be achieved. Based on that, a two-stage mathematic model
for stockpiling and yard crane scheduling optimization is formulated with the promise
of minimizing pre-reshuffling and crane movement distance. As a methodology,
heuristics solving the initial scheduling is developed to obtain a static pre-optimized
plan. To conquer the deviation of predicted delivery sequence, a dynamic algorithm is
proposed in optimizing the real-time scheduling. Several sets of experimental results
demonstrated the effectiveness and robustness of the proposed model and algorithm.

1. Introduction

Container yard is the distribution center of inbound/outbound containers in terminal and the
indispensable resource supporting container transshipment. Yard crane, the main handling
equipment in yard, has a direct impact on the productive efficiency of the yard or even the
whole wharf. For export containers, the uncertainty of truck delivery sequence will directly
increase the randomness of piling work, and thus leads to a certain number of relocations due
to the pick-up operations handled by yard crane in ship loading process. Based on the survey
data of Chinese high-modernized container terminal, the reshuftling rate is nearly 14% and
has kept a long-term high. Reducing reshufflings has become the bottleneck factors affecting
the operational efficiency of container terminal, how to optimize the export container stacking
strategies to effectively improve work efficiency and reduce relocation operations for
shipment has become an important subject faced by the terminal operators.
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2. Literature Review

Many scholars have studied the optimization of yard crane stockpiling operations based on
different optimization objectives. Among them, heuristic is often used to solve the problem.
Hakan Akyiiz and Lee[l]proposed a beam search heuristic, which can solve the dynamic
container relocation problem (DCRP) efficiently, and the method performed better than the
other two heuristic methods: index-based heuristics and heuristics using the binary IP
formulation. Ting and Wu[2]also proposed a beam search heuristic to solve the problem, with
a test on benchmark instances and a comparison with other leading heuristics. A tabu search
based heuristic approach is proposed by Karpuzoglu et al.[3]to solve the DCRP with the
arrival and departure sequences of containers are assumed to be known in advance. Tanaka
and Takiki[4]constructed a faster branch-and-bound algorithm that employs the proposed
lower bound, and demonstrated its effectiveness by numerical experiments. Tricoire et al. [5]
proposed a branch-and-bound algorithm embedded a new lower bound that generalizes
existing ones, then assessed the influence of various factors on the efficiency of
branch-and-bound algorithms for the block relocation problem (BRP). Borjian et al.[6]
extended the A* algorithm and combined it with sampling technique to solve the two-stage
stochastic optimization problem, with the assumption of a probabilistic distribution on the
retrieval order of unknown containers.

As the assumption of knowing the full retrieval order of containers is particularly
unrealistic in real operations, Galle et al[7]studied the stochastic CRP, which relaxes the
assumption. They introduced the batch model, the Pruning-Best-First-Search (PBFS)
algorithm and a PBFS-Approximate algorithm with a bounded average error to solve the
problem. With container reshuffling operations and inter-crane interference constraint
considered and the dynamic processing times for retrieval containers taken into consideration,
Zheng et al[8]investigated two-yard-crane scheduling with stockpiling and retrieval tasks in a
container block. To solve the problem, a heuristic named dividing, sequencing, and
comparing (DSC) and a genetic algorithm (GA) are proposed.

Most of the studies above set the container operation task to be given, and the actual
operation of the port is undeterminable; moreover, in the process of port consolidation, it
follows the rule that the properties of the containers from the same customer are basically the
same, rather than the premise of “every two container operations have an order of priorities”
in most of the current study. Taken the randomness and of the containers’ arrival sequence
into consideration, this paper uses Markov Chain to deal with the random arrival sequence of
the export container batches, and formulates the yard crane stockpiling model which
considers both the relocation problem and the yard crane scheduling problem

3. Problem Description

The terminal consolidation process can be divided into three stages: truck appointment, stock
plan preparation and terminal operation. Firstly, the truck company will provide booking
information including container number and their type, size, unloading port and expected
arrival time for appointment. According to the information, the yard operator prepare storage
plan to determine the specific location of each container. Each truck company will have a
number of containers needing service, this group of container will usually arrive at the
terminal at the same time. According to the practical principle of centralizing the containers
that belong to the same company, each container group can be stockpiled as several full stacks
and some scattered containers, and these scattered containers caused the reshuffling
operations in the subsequent ship loading operation.
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Each container group belonging to the same truck company is divided into two sets: One is
presented as 4, in which containers would not be relocated, and another is presented as B,

in which containers could be relocated. Containers of 4, are able to construct a number of
stacks composed of container belong to group n  and these stacks, called “pure stack” make

up a set named 4 . Element number of B, should be less than the nominal height a stack.

Containers of 4, are able to construct a number of stacks composed of container belong to
different groups and these stacks, called “reshuffling stack” make up a set named B
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Figure 1: Illustration of the block.

Figure 1 illustrates the top view of a block. Each rectangle represents a stack. Stacks with
number represent pure stacks, and the others represent reshuffling stacks. For instance, there

are three pure stacks in bay 1, and containers in these three stacks belong to 4, and 4;.The
purpose of the model is to optimize the global storage scheme of set 4 and set B based on

the sub optimized stockpiling of containers of set B . All of these optimizations are carried
out under the condition that the delivery sequence is uncertain

3.1. Assumptions

This model is based on the following assumptions:

(1)The types of all the containers to be exported are same (e.g. 20 feet standard container);

(2)The arrival time, unloading port, weight of containers are known, and these information
of the containers belonging to the same company are same ;

(3) The moving distance of the crane is calculated in the unit of bay length, and the initial
position is bay 1.

3.2. First-Stage Model

I : Rated height of a stack.

N : Total number of truck company.

M : A sufficiently large positive number.

U, : Container number of company 7.

F : Scattered container number of companyn, F, =U, mod/ .
O, : Arrival order of company 7 .

N N
Total number of reshuffling stacks, 7 =[>_F,—( F,)mod/]/I+1.

n=1 n=1

.+ Discharging port of containers belonging to company 7 .

LN

=

'+ Weight class of containers belonging to company n , with the maximum level of W .
c,: Stockpiling priority of containers belonging to companyn,c, =Wd, +w, .
slot(t,i) : Slot at tieri of scattered stackz.

Decision variables:
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S, : Whether slot(t,i) is occupied by containers of company 7,
1 if slot(t,i)is occupied by containers of company n
i {0 others
n=12Nit=1,2+T:i=12-]1.
R . (s,m., sm(,._z)) : Whether the stockpiling priority of container at slo#(z,i) 15 is less than
the one atslot(t,i —z),
1if e
Ry (S,is Spizy) = 4 810t (2,0) is less than the one at slot(t,i— z)
0 others
t=12T;i=2*1,z=12+++i—1.
Objective function:

T 1
Pl = min Zz Rt(i—z)(Sm't’ Snt(i—z)) ( 1 )

Constraints:

T I
Zzsnti:F:z (l’l=1,2,...,N) (2)

N
IS (t=12,...,T;i=12,...,1) (3)
n=1
N N
D5 S Sy (E=12,0.T5i=2,..,1) (4)
n=1 n=l1
N N N
> 0,8, (1= 5, M >> Oy, (=12,...T;i=2,...I) (5)

n=1 n=1 n=1

174 N N N
Rt(i—z)(Snti’ Sm‘(i—z)) = {m—' JWhen V = nz;snti lrexp [nZ:; Cnsnt(i—z) - nz;cnsnti ]_ 1—‘
(t=1,2,...,T;i=2,...,[;z=1,2,....i—1) (6)

The objective function affiliation: is to minimize the total pre-reshuffling number.
Constraint (2) ensures that the total number of slots occupied by each company in reshuftling
stacks is equal to its scattered container number. Constraint (3) enforces that each slot is
occupied exactly once. Constraint (4) ensures that each container will not be suspended.
Constraint (5) ensures that the arrival order of container at each slot is behind the container
under it. Constraint (6) ensures that a pre-reshuffling is recorded when the stockpiling priority
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of container at sloz(¢,i) is less than the container at slot(¢,i—z).

3.3. Second-Stage Model

As the output of the first-stage model, the stockpiling plan of 7 reshuffling stacks will
participate in the second-stage model. We define H as the set of the 7 reshuffling stacks,
and H, denotes the ¢ th reshuffling stack in H . Furthermore, We define Z as the set of

the all pure stacks, and its subset Z,  denotes the pure stacks composed of A4, . The element
number of Z  can be hence calculated as ZE, =(U,—F,)/I.

K : The total number of bays in the assigned block.

J : Stack number of each bay.

Decision variables:

h,; : Whether stack j ofbay k isoccupiedby H,,
1 if stack j of bayk is occupied by H,

h, = t=12,T;j=12,J;k=12,--K.
ok {O others J

g, ¢ Whetherstack j ofbay k isoccupiedby Z,,

1 if stack jof baykis occupied byaelementof Z,
gnjk =

0 others
n=1,2,N;j=12,J;k=1,2,K.

e, : Whether bay k contains containers belonging to company n,

1 if bay k contains containers belonging to

J T J 1
e, =4 companyn (namelngnjk +ZZ(hy.k Zsml. )>0) n=L23N;k=12-,K.
i=1

Jj=1 =1 j=1
b

0 others

After consolidation of each truck company, yard crane will stay at the bay where it handles
the last operation. Before the next consolidation of a certain truck company, it needs to move
to the initial bay to prepare the subsequent work. The moving distance is called as switching
distance. The different distribution of containers belonging to the same company caused 3
kinds of switching operation as shown in Figure 2.

T e mh—

TOm— T OmEc L e

aml | | BEeml | I=iSasl |=alas

T R et
Case 1 Case 2 Case 3

Figure 2: Three kinds of switching operation.

We assume that yard crane obeys sequential operation between different bays containing
the containers belonging to the same company. Consequently, a rule is proposed to determine
the initial bay for the stockpiling of containers of A4, U B,. The operated crane will:

(1)Move to the nearest bay that contains the containers of 4, U B, when all bays contains
the containers of 4, U B, are all on the same side. (For case 1 and case 2)
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(2)Move to the nearest terminal bay that contains the containers of 4, UB, when the
staying bay is among the bays contains the containers of A4, U B, . (For case 3)
E,,, - Whether sequential operation exists between bay & and bay p,

1 if sequential operation exists between bay k and bay p

p-1

Enkp = (namely enkenp(1+ Z enq) =1)

q=k+1
0 others
k=1,2,K-lp=k+1Lk+2,,K.
O, : The number of the n th truck company entering the yard, O, =n, n=12,,N.

Max, : The maximum order number of bays containing the containers belonging to the
n th truck company entering the yard, is equal to max {ktaé k} ,n=12,N.
Min, : The minimum order number of bays containing the containers belonging to the
n th truck company entering the yard, is equal to min {ktaé k} ,n=12,N.
SW, : The order number of the last operating bay containing the containers belonging to
the n thtruck company entering the yard. We have the formula:
SW,=Max, ,
Min, =ASW,_, = Max,
- Max, “SW, _ < Min,
" |Max, *SW,  —Min, >Max,—SW,
Min, *SW, —Min, <Max, —SW, | n=2,3,-- N.
DS : Crane switching distance between the 7 th truck company entering the yard and the
(n-1)th truck company entering the yard. We have the formula:
DS, = Min, -1 ’
SW, ,—Max, *4SW, > Max,
DS, =3 Min,—SW,, H4SW, < Min,
min{SW,_, — Min,,Max, —SW,_} =iMin, <SW,  <Max, p =23, N.

Objective function:

>

-1

S (p-RE,) (D

p=k+1

N N
P = min(ZDSﬂ + Z

n=1 n=1

=~
1l
—_

Constraints:
J N J T
¥ gu Y hy=J  (k=12K) (8)
= :

1 n=1 Jj=1 t=1
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ZK:ZJ:gnjk:ZEn (l’l=1,2,"‘,N) (9)

k=l j=1
K J
DDy =1 (t=1,2,7T) (10)
k=l j=1
N T
Neutdh=1 (=12, J3k=1,2-K) (1
n=1 t=1

The objective function is to minimize the total moving distance of yard crane. Constraint
(8) ensures that the total number of stacks is less than the rated quantity. Constraint (9)
enforces that the total number of pure stacks occupied by each company is equal to its initial
quantity. Constraint (10) ensures that each reshuffling stack only and must occupies one stack.
Constraint (11) enforces that each stack is occupied by a pure stack or reshuffling stack
exactly once.

4. Solution Algorithm

The algorithm consists of two parts corresponding to the two stages of the formulated model.

/" Appointment R !

\_ Information / bl 1 |

I ! |

T "”"”T Lol Update the stowage plan : !
: | I | |
' Predict generalized box || i i t | |
1 sequence 1| | | LS-based storage scheduling | | Store !
1 R I | according ! |
| L] t | to the e ™ 1
| A _. ! | End of Gate-in | !
} Use SA to get the P Update prediction sequence ! stowage | . !
' | reshuffling stowage i Lo Real-time | plan !
| solution o L T __ Scheduling | | |
| | | |
| | | |
| | Use SA to get the yard || | Isthe !
| : ‘ predict sequence Y |
! crane moving path | ! o |
‘ | ! accurate ! !
! I |

Figure 3: Flowchart of the proposed algorithm.

(1)The first part is designed to achieve an initial stockpiling plan. Based on the historical
data, MC is used to predict the generalized delivery sequence and a SA is developed to solve
the two optimization problem.

(2)The second part is designed as a dynamic heuristic to optimize the two objections in
real-time. MC is used to renew the predicted delivery sequence when the actual delivery
sequence does not match the predicted delivery sequence.
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4.1. Algorithm For Initial Planning

In practice, the arrival times of partial trucks can’t match their appointment time because of
the uncertain traffic conditions, which leads to the dynamically changing of delivery sequence.
A typical discrete stochastic process, Markov Chain, is used to describe the uncertain
sequence.

Based on the selected discrete state, times number of each other's transformation of each
sequence in the historical data is counted, and the transition probability is calculated, thus the
state transition probability matrix of the Markov chain can be obtained. Further, referring to
the previous consolidation sequence as the initial state, the generalized delivery sequence of
the customers at the current consolidation can be predicted based on the maximum likelihood
value (max P, =(X,,,=S5,|X,=S,)) of the state transition probability.

According to the structural characteristics of the solution of the first-stage model, a MSA is
developed to lower the pre-reshuffling number. Code for each feasible solution is set to a
bi-dimensional matrix of / rows and 7 columns, which consists of truck company number
and ‘0’. Each reshuffling stack is denoted by a column of the matrix. The tabu search for a
solution is shown in Figure 4. Neighborhood is constructed by exchanging two numbers from
two different stacks randomly. Infeasible solution may generate in case that the number in
new solution do not conform the delivery sequence. Reordering the number within stack is
carried out to ensure the new solution feasible. As shown in Figure 4 (a), if the current
delivery sequence is 3-1-2-4, the Icolumn and column 3 of new solution do not obey the
sequence, and the result of renewing the code is shown in Figure 4 (b).

1L okdo 410 4 0
Exchang\e“l 2 4 9 19 19
3133 31133

(a) Hlustration of neighborhood construction (b) Ilustration of the new solution

Figure 4: Neighborhood construction of the first-stage model.

The stockpiling scheme of reshuffling stacks can be obtained through the algorithm above,
which constructs the scheduling base of the second-stage model. In view of the structural
characteristics of the second stage solution is similar to the first stage, the MSA is used again
to solve the problem. For the second-stage model, stack is treated as the scheduling unit and
the encoding is designed from the top view of a block. A solution is represented by a matrix to
describe the block distribution. Each element denotes a stack and each column denotes a bay.
If the stack is a pure stack, the corresponding element value is the truck company number, or
the value is N+¢,¢=1,2,...,T . Exchanging two different stack number from different bay is
used as the tabu search of the algorithm. No infeasible solution is able to be generated
because of the block physical construction. The algorithm parameters are set as follows:

(1) Initial temperature is set on the basis of Af under different scales of cases.

(2) End temperature is set as 1.

(3) Temperature drop coefficient is set as 0.8.

(4) Internal circulation times is set as an adaptive function of where ¢ is the current
temperature.
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4.2. Algorithm For Real-Time Optimization

The real time scheduling is based on the modified MC readjusting the deviation of predicted
sequence. Considering a consolidation with N  truck companies, each delivery time is
regarded as a real-time scheduling point, hence N rescheduling is carried out during the
horizon. The delivery sequence predicted using MC is set to Q, and the nth arrival truck

company of O issetto Q,; The actual delivery sequence is set to C, and the nth arrival
truck company of C issetto C,; When C, does not match Q,, the current predicted

delivery sequence will be replaced by a new one extracting from S with the conditions as
follows:
(DIts partial sequence from the first digit to the n—1 digit should match Q;

(2) Its n—1 digit should match C,.

The all sequence of S satisfying the above conditions construct the temporary alternate
set denoted by S’ . Based on the initial state X, , we can obtain the maximum likelihood of

state transition probability, max P, =(X,, =S| X,=S,) , and the corresponding state S’

replaces the current one as an updated predicted delivery sequence.

Inconsistent
e ¢ 12| 0|
Formens ¥ Q[ 1 [ 2 ] _3_:1f — ==
sl 177 2 4 s | 6 | 5 7 | P, =04
A o |
s’ 4% L[ 2 SIS, | 7=03
S3|‘ 1 | 2 4 [ 6 | 5 | 3 7 |pP,=02
Consistent Part '
enistentar 4|_<— Disordered Customers —»

Figure 5: Updating of the forecast delivery sequence.

A renewing process of the predicted delivery sequence is shown in Figure 5. The actual

delivery sequence is not consistent with the predicted one in the illustration. S , 5, and 5

constructing the alternate state set own the same partial sequence of 1-2-4 in front. S is chosen
as the updated predicted delivery sequence Q" due to its maximum state transition
probability s

Considering the dynamic scheduling should be acute, real-time algorithm needs to have the

characteristics of fast convergence. Hence a Local Search (LS) is designed to solve the
real-time scheduling problem. P/ is set to denote the set of stockpiling planning, and P/,
denotes the stockpiling planning before the arrival of truck company n; S7, denotes the
stockpiling state in » th decision point, and hence S7, denotes the Empty block. The
essence of the proposed real-time algorithm is to optimize the un-stockpiled slots of Pl
based on Q' and afterwards to stockpile the containers of C, converting S7, to ST, .

Set f (x) as the function calculating the pre-reshuffling number of a stack, and hence
f (HT) denotes the pre-reshuffling number of stack H, . For the stockpiling planning of

B

., iterative steps of the LS are as follows:
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Stepl: Optimize the stockpiling of each stack in P/ based on Q' ,set positive integer S ,
a=0;

Step2: If a =, steps end, or select two containers belonging to different truck company
from two different reshuftling stacks H, and H,,, exchange them to form H/ and H/,,
adjust the stockpiling order inside the stack based on Q'.

Step3: Calculate the gap of pre-reshuffling number between the two schemes before and
after the change, Af = f(H) )+ f(H},)-f(H,)-f(H,).If Af<0,the new solution will
be accepted and make a =0, or preserve the original solution and make a=a+1. Go back

to Step2.
Constant S is the threshold of the not-improved iteration number for controlling the

convergence of the algorithm.

L:{L 7 7 7 ? 7 D Stockpiled containers
516 /67 64 6 5 ‘

3020216 4 4 2

B 353

H H, H, H, H H,

Figure 6: Comparison of stockpiling situation.

tuses of reshuffling stacks before and after real-time scheduling. The stockpiling statuses in
the left picture of Figure 6 is the optimized result before the consolidation of C, (truck

company 4), and in the right picture is after the consolidation. According to the renewed Q',
stockpiled order is adjusted to avoid the suspending.

The stockpiling planning of reshuffling stacks is replaced in P/, and a new PI is
obtained. Set g(x) as the function to calculate the crane moving distance, and the real-time
scheduling algorithm for crane moving path is as follows:

Step1: set positive integer 4, a=0;

Step2: If a= A4, steps end, or select two un-stockpiled stacks from two different bays K,
and K, exchange them to form a new stockpiling planning P/, ;

Step3: Calculate the gap of moving distance between P/, and PI
Ag=f(PI')-f(PL)).If Ag<0, the new solution will be accepted and make a=0, or

preserve the original solution and make a=a+1. Go to Step2.
Constant A is the threshold of the not-improved iteration number for controlling the
convergence of the algorithm.

5. Numerical Experiments

The numerical experiments are divided into two parts. The first part is to verify the
practicability of the algorithm through the cases of different scales, and the actual scheduling
rules of yard are used as comparison. In the second part, two different real-time storage
strategy are proposed to verify the dynamic efficiency of the second stage algorithm.
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5.1.Comparison With The Practical Scheduling Rules
5.1.1.  Practical Scheduling Rules.

Based on investigation, the practical rule for yard stockpiling operation can be divided into
two stages: For stock planning, the containers belonging to the same company are stocked in
the same stack or the neighbor stacks in the same bay furthest, and the containers having the
same or similar discharging port are pushed for the largest possible to be stocked in the same
bay or the neighbor bays. For real-time scheduling, the yard operator proposes to adjust the
stockpiling according to the actual arrival sequence, as containers owning the same weight
class or the same discharging port are stocked in adjacent position as much as possible.

5.1.2. Comparison and Analysis of Results.

We design 3 groups of experiments with different truck company number and block size, as
shown in Table 1. The actual arrival orders in last 5 weeks were selected as the simulated
delivery sequence.

Table 1: Parameters of numerical experiments.

Group Bay Truck company Rated §tacking Stack number for
number number height each bay
1 15 20+ 5 5 8
2 15 305 5 8
3 20 40+ 5 5 8

The comparison of average values of pre-reshuffling number and crane moving distance
for 2 kinds of stockpiling strategy are shown in Table 2. Comparing with the practical rules,
the effectiveness of proposed optimizing algorithm in reducing the reshuffling number is
remarkable. The crane moving distance of the proposed algorithm is inferior to the compared
rules because that the practical rules follow the "nearest storage" principle. Effects of crane
moving distance and reshuffling number on yard efficiency is mainly reflected in the
operational time. According to the practical operation experience, the average time for the
crane to move a bay distance is 2 seconds, and one reshuffling operation costs 2 minutes.
After converting each solution into time value, the solution of optimization algorithm
proposed in this paper is reduced by 30% to 50% compared to practical stockpiling rules, the
optimization effect is obvious.
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Table 2: Results and time comparison with the practical rules.

Solutions of g} ione of Gap Tvos | Tves | G2
Group proposed . 0 (time)
algorithm practical rules (%) (s) (s) (%)
PRN! | CMD! | PRN? | CMD? | PRN | CMD
31 102 70 86 55.7 | -18.6 | 3924 | 8572 | 54.2
39 99 72 77 45.8 | -28.57 | 4878 | 8794 | 44.5
1 36 81 71 62 49.3 |-30.65| 4482 | 8644 | 48.1
34 83 62 69 452 |-20.29 | 4246 | 7578 44
12 106 41 84 70.7 |-26.19 ] 1652 | 5088 | 67.5

50 142 95 112 474 |-26.79 ] 6284 | 11624 | 45.9
42 141 89 107 52.8 | -31.78 | 5322 | 10894 | 51.1

2 66 133 97 105 32.0 |-26.67 | 8186 | 11850 | 30.9
59 147 72 104 18.1 | -41.35| 7374 | 8848 | 16.7
38 135 88 99 56.8 |-36.36 | 4830 | 10758 | 55.1

61 165 106 134 42.5 |-23.13 | 7650 | 12988 | 41.1
65 172 101 129 35.6 | -33.33 | 8144 | 12378 | 34.2
3 79 155 89 106 11.2 |-46.23 ] 9790 | 10892 | 10.1
48 159 112 123 57.1 |-29.27 | 6078 | 13686 | 55.6
55 161 107 117 48.6 | -37.61 | 6922 | 13074 | 47.1

PRN: pre-reshuffling number; CMD: crane moving distance; Gap for PRN = (PRN? - PRN!)
/ PRN?x100%; Gap for CMD = (CMD? - CMD!) / CMD?x100% ;TVOS: Time value of
optimized solutions; TVPS: Time value of practical solutions; Gap(time) = (TVPS - TVOS) /
TVPSx100%.

5.2. Comparison of the Real-time Scheduling Rules
5.2.1. Real-time Scheduling Rules as Contrast

Rule 1: Invariant strategy

The same initial storage scheme is used. In real-time scheduling, no re-scheduling will be
carried out even if there is a deviation in the predicted sequence.

Rule 2: Greedy strategy

5.2.2. Comparison and Analysis of Results.

In order to further detect the dynamic optimizing effect of the proposed algorithm, the
disordered degree of the generalized delivery sequence is classified according to two
dimensions: One is to be classified according to the disordered companies number in the
sequence. For instance, group 1 of study cases can be classified into 6 levels corresponding to
disordered number of 6,8,10,12,14,16. The second is to be classified according to the
dispersion degree of disordered truck companies.

Figure 7 shows the results of 3 different real-time scheduling strategies to group 1 with
sequence disordered levels from 1 to 6 and dispersion degree of 2. Cases in each disordered
level are repeated 100 times. Two real-time scheduling strategies are superior to the static
strategies. Strategy 2 is inferior to the proposed algorithm, because the greedy algorithm only
considers the optimal scheduling of current containers, not fully combined with the updated
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information and delivery sequence arrangements for all truck companies.
12000
10000 /
8000 /
% —e— Strategyl

6000
4000 % —=— Strategy?2
—a— Proposed Algorithm

2000

Time value(s)

0

1 2 3 4 5 6
Disorderedlevel

Figure 7: Computational results of different disordered levels.

Figure 8 shows the increase of the pre-shuffling number of each strategy in scheduling
horizon. Since the initial stockpiling planning are based on the same predicted delivery
sequence, the performance of the optimization results are basically the same in early-term in
which relatively less truck companies arrive. With the increase of consolidated containers,
strategy 1 shows a significant disadvantage in the medium-term while the optimization effect
of strategy 2 is better than the proposed algorithm. This is because the proposed algorithm is
combined with the all un-arrived containers based on the updated predicted sequence. The
schedule is not the best in current but the best in global. At the late-term, with the arrival of all
containers, results of the proposed algorithm are prior to strategy 2.

100

80 P at

60 -
/ —e—Strategyl
10
/ —a—Strategy?2
20

—a— Proposed Algorithm

pre-reshuffling number

0o H

12 3 456 7 8 91011121314151617181920
Truck company number

Figure 8: Comparison of reshuffling number under 3 scheduling strategies.
6. Conclusions and Further Study

This paper constructs the generalized delivery sequence and then constructs optimized
mathematical models of export container stockpiling operation with the goal of minimizing
the number of pre-reshuffling and moving distance of crane respectively. Also, a simulated
annealing two-stage algorithm was developed to solve. Aiming at the prediction deviations of
MC, a real-time scheduling algorithm based on renewing predicted sequence was designed
with the idea of Local Search. A series of numerical experiments validate the practicability
and effectiveness of the proposed stockpiling models and algorithms.

Further research will focus on building the inner link between crane moving distance and
the number of pre-reshuftling.
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